Re-sampling groups of variable lengths so that group lengths are equal (R, dplyr)
By : Bunchi
Date : March 29 2020, 07:55 AM
wish helps you If I understood the question correctly, RESULT is some kind of a complement data frame to DATA such as when combined together they would produce 4 rows for each group. code :
NUMBER <- 4
set.seed(1234)
RESULT2 <- DATA %>%
group_by(SITE) %>%
mutate(n = n(),
sampsize = as.numeric( ifelse(n>=NUMBER,0,NUMBER-n)) ) %>%
do( sample_n(., size=.$sampsize[1], replace=TRUE ) ) %>%
select( -n, -sampsize ) %>%
ungroup()
RESULT2
Source: local data frame [3 x 4]
SITE STUFF STUFF2 STUFF3
1 B 100 200 400
2 C 6000 12000 24000
3 C 6000 12000 24000
NUMBER <- 4
set.seed(1234)
RESULT3 <- DATA %>%
group_by(SITE) %>%
mutate(n = n(),
sampsize = as.numeric( ifelse(n>=NUMBER,0,NUMBER-n)) ) %>%
do( rbind(.,sample_n(., size=.$sampsize[1], replace=TRUE )) ) %>%
select( -n, -sampsize ) %>%
ungroup()
RESULT3
Source: local data frame [12 x 4]
SITE STUFF STUFF2 STUFF3
1 A 1 2 4
2 A 2 4 8
3 A 30 60 120
4 A 40 80 160
5 B 100 200 400
6 B 200 400 800
7 B 300 600 1200
8 B 100 200 400
9 C 5000 10000 20000
10 C 6000 12000 24000
11 C 6000 12000 24000
12 C 6000 12000 24000
|
python pandas: vectorized function value error "lengths do not match"
By : RebliNk17
Date : March 29 2020, 07:55 AM
Any of those help I believe you can use broadcasting: code :
start_date_period = pd.period_range('2004-01-01', '12-31-2017', freq='30D')
end_date_period = pd.period_range('2004-01-30', '12-31-2017', freq='30D')
tra = df['transaction_dt'].values[:, None]
idx1 = np.argmax(tra < start_date_period.end_time.values, axis=1)
idx2 = np.argmin(tra > end_date_period.start_time.values, axis=1)
df['window_start_dt'] = start_date_period[idx1]
df['window_end_dt'] = end_date_period[idx2]
print (df)
customer_id transaction_dt product price units window_start_dt \
0 1 2004-01-02 thing1 25 47 2004-01-01
1 1 2004-01-17 thing2 150 8 2004-01-01
2 2 2004-01-29 thing2 150 25 2004-01-01
3 3 2017-07-15 thing3 55 17 2017-06-21
4 3 2016-05-12 thing3 55 47 2016-04-27
5 4 2012-02-23 thing2 150 22 2012-02-18
6 4 2009-10-10 thing1 25 12 2009-10-01
7 4 2014-04-04 thing2 150 2 2014-03-09
8 5 2008-07-09 thing2 150 43 2008-07-08
window_end_dt
0 2004-01-30
1 2004-01-30
2 2004-01-30
3 2017-07-20
4 2016-05-26
5 2012-03-18
6 2009-10-30
7 2014-04-07
8 2008-08-06
|
error - lengths differ when trying to integrate (but lengths are the same)
By : Anwarsha Jamhar
Date : March 29 2020, 07:55 AM
this one helps. I believe this is a bug in the MESS package with the absolutearea flag set to TRUE. If you look at the code for auc: code :
if (absolutearea)
myfunction <- function(x) { abs(splinefun(x, y, method="natural")) }
else
myfunction <- splinefun(x, y, method="natural")
res <- integrate(myfunction, lower=from, upper=to)$value
|
How can I handle the error "Error: all(lengths == 1L | lengths == n) is not TRUE"?
By : Shubham
Date : March 29 2020, 07:55 AM
wish helps you gs_add_rows only can add rows once the header is available in the google sheet so you need to create the first row or the header information with gs_edit_cells() before you use add_rows. This is explained in the googlesheets vignette.
|
Java. Find the lengths of strings in an array list for which those string lengths occur the most
By : user3574503
Date : March 29 2020, 07:55 AM
Hope this helps For example, say I have the following array after splitting it. , You can make use of Java Stream Library's groupingBy collector code :
String[] arr = new String[]{
"Hello",
"world",
"what",
"a",
"fine",
"day",
"it",
"is",
"the",
"date",
"is",
"01/10/2020"
};
List<Integer> maxRepeatingSizes =
Arrays.stream(arr)
.collect(Collectors.groupingBy(
String::length,
Collectors.counting()
)).entrySet()
.stream()
.collect(
Collectors.groupingBy(
Map.Entry::getValue,
Collectors.mapping(
Map.Entry::getKey,
Collectors.toList()
)
)
).entrySet()
.stream()
.max(
Map.Entry.comparingByKey()
).get()
.getValue();
|